

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
April 1992 – Revised November 7, 1997

Understanding Asynchronous Dual-Port RAMs

This application note examines the evolution of multi-port
memories and explains the operation and benefits of
Cypress’s asynchronous dual-port RAMs. It also explores the
benefits of using dual-port RAMs over single-port RAMs in
multiprocessor systems.

A dual-port RAM is a random-access memory that can be
accessed simultaneously by two independent entities. In dig-
ital ICs, this implies a dual-port memory cell that can be ac-
cessed at the same time using two independent sets of ad-
dress, data, and control lines.

Dual-Port Memory Using Single-Port RAM
Before the dual-port memory cell existed, designers created
dual-port RAMs from single-port RAMs by adding a multiplex-
er between the RAM and the two entities that shared the
RAM. Figure 1 illustrates a block diagram of such an arrange-
ment. Two processors, MP1 and MP2, share the RAM. If each
processor has access to the RAM half the time, the resource
is shared equally and is said to be allocated according to a
fairness doctrine.

This time division multiplexing assures that there is no con-
tention for the RAM. However, performance suffers if the
RAM’s access time does not equal 1/2 or less of the proces-
sors’ clock period, assuming that the processors are clocked
from the same source.

This approach requires either single-port memories with ac-
cess times equal to one half of a bus cycle time, or requires
that each processor access the RAM on every other cycle.
Often these requirements are limiting due to speeds of avail-
able RAMs and difficulties with interleaving transactions be-
tween processors. Note also that this approach requires both
processors to be running from the same clock.

By using dual-ported RAMs, the efficiency of memory ac-
cesses can essentially be doubled. Also since Dual-port
RAMS do not have restrictions regarding accesses between
the two ports, each processor can be operating at different
clock rates. This inherent synchronization property proves to
be one of the largest benefits of using dual-port RAMs.

Dual-Port RAM Applications
The first applications for dual-port memories were for CPU
register files. Dual-port RAMs can also serve as data or in-

struction cache memories. However, the largest usage of
dual-port RAMs is in communications, which includes the ex-
change of data between processors, processes, and sys-
tems.

Virtual Dual-Port RAM

Communication between systems does not require physical
dual-port RAMs. Instead, a conventional RAM memory is par-
titioned into virtual data-storage areas (buffers), usually to
store at least two data packets. These buffers are shared be-
tween the communications controller and the intelligent ele-
ment that assembles the packets and stores them (usually a
microprocessor). The communications controller can also be
a microprocessor. It reads the data from memory, converts
the data from parallel to serial form, encodes the data, con-
verts the data to analog form, and sends the data out over the
communications channel on the transmit side. If the system
contains only one processor, the data buffers are not shared,
and the system needs neither a virtual nor a physical
dual-port RAM.

Control information associated with each data buffer tells the
communications controller the number of words in the buffer
and the starting address of the data in the buffer. The control
information resides in one or more memory locations whose
addresses have been previously agreed upon by the two pro-
cessors.

This simple software-based buffer example requires a second
level of control—a mechanism or procedure that prevents the
two microprocessors from getting in each other’s way. In other
words, the system needs a procedure control mechanism.

Another way of analyzing this requirement introduces the
concept of data ownership. Say, for example, that processor
A assembles and stores messages and thus owns the data
while performing these tasks. Likewise, the communications
processor B owns the data while performing its tasks. The
procedure control mechanism amounts to a technique for
transferring data ownership between processor A and B.

In large systems, where many processors perform many dif-
ferent operations, the processing of the information is called
a job or a procedure. The procedure is divided into many
tasks, which can be performed by different processors. The
tasks can either be scheduled and assigned by a processor
dedicated to that task or be performed by any available pro-
cessor. These alternatives are referred to as autocratic and
egalitarian systems, respectively. The term egalitarian implies
that the processors are treated equally. In either case, the
processors must have access to a shared-memory location
used for message passing.

Synchronizing sequential processes is the cornerstone of
concurrent programming, which applies to multi-tasking, sin-
gle-processor systems; distributed-processor networks; and
tightly coupled multiprocessor systems.

Figure 1. Dual-Port Memory Using Single-Port RAM

RAM

MP2MUXMP1

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_1

Understanding Asynchronous Dual-Port RAMs

2

Message Passing

In the two-processor system under consideration, synchroni-
zation can be achieved by using a lockword or lock variable.
The lock variable can apply either to data (as in this example)
or to executable instructions.

The lock variable is a location in shared memory that is oper-
ated upon using two synchronization primitives: LOCK (v) and
UNLOCK (v), where (v) is the location operated upon. These
are simple binary switch operations. If a processor wishes to
lock or own a critical section of code or data, the processor
indivisibly sets the lock variable if testing shows the lock vari-
able to be zero. If the lock variable is not zero, then the oper-
ation is repeated until the lock variable is zero. To unlock the
critical section, a processor sets the lock variable to zero and
continues.

Most modern processors have indivisible read/modify/write
instructions, also called test and set (TAS) instructions. In
Reference 1, however, E. W. Dijkstra shows that lock vari-
ables can be implemented without using a read/modify/write
instruction. And in Reference 2 he develops the semaphore,
a technique for managing a queue of tasks waiting for a re-
source. Lock variables surround or bracket semaphores and
thus provide entry and exit control on a mutual-exclusion
basis.

Typical TAS Instruction

The current example assumes that the processors have a
TAS instruction. A typical TAS instruction operates as follows:
read, test, and set to X. The addressed memory location is
read, and if its contents are zero, the value X is written into
that location. If the contents are not zero, the contents are
returned to the processor, and the value in the memory loca-
tion is not disturbed.

The usual convention is that a value of zero in the lock vari-
able means that the resource associated with it is available.
A non-zero value means that another processor temporarily
owns the resource and that the resource is not available. After
performing the task associated with the lock variable, the pro-
cessor sets the lock variable’s value to zero. The system is
initialized with all lock variables set to zero.

In the current example, processor A performs a TAS operation
on the lock variable and, finding the lock variable to be zero,
sets the lock variable to a one. This tells processor B that the
message is in the process of being assembled in the memory
buffer area and is not ready to be transmitted. Processor A
then assembles the message. After the message is assem-
bled, processor A clears the lock variable, sends a message
to processor B saying that the message is ready to be trans-
mitted, and gives the data’s location and the number of bytes
to be sent. Processor B reads the message from processor A
and performs a TAS operation on the lock variable; finding the
lock variable to be zero, processor B sets it to a two. This tells
processor A that the message is in the process of being trans-
mitted. Processor B then transmits the message and clears
the lock variable. Processor B sends processor A a message
that the transmission task has been completed. After receiv-
ing the message from processor B, processor A performs a
TAS operation on the lock variable; finding the lock variable to
be zero, processor A concludes that the message has been
successfully transmitted.

Note that this procedure does not require the use of a
dual-port RAM. The procedure does require each processor

to perform a TAS instruction, clear the lock variable, and send
a message to the other processor. Sending a message im-
plies writing to a location in shared memory. To know that a
message is waiting, the processor receiving the message
must either read the memory location periodically (referred to
as polling a mailbox) or the act of writing to the mailbox must
generate an interrupt to the receiving processor. The inter-
rupt-driven alternative is usually preferred because the re-
ceiving processor does not have to waste time in a polling
sequence.

The Deadly Embrace
The deadly embrace can occur when two masters are con-
nected in parallel to make a wider word. If the left and right
port addresses match, and the left and right port chip enables
then become active to both chips at approximately the same
time, it is possible to have one port of one master lose and
the opposite port of the other master also lose. In other words,
if an address match occurs and both ports are enabled during
a small time window or an aperture of uncertainty, the
dual-port RAM cannot determine which port wins or loses.

Under these conditions, if the corresponding left and right port
busy pins are connected together, both ports of both masters
are active (LOW). This condition occurs because the busy
outputs are open drain, and the loser pulls the node LOW.

This condition is the simplest example of the deadly embrace.
As far as the external world is concerned, both ports are busy,
and the system remains locked up indefinitely, with each port
waiting to be released by the other. Each master’s arbiter sec-
tion thinks it has lost the arbitration and is waiting to be re-
leased by the other.

In general, the deadly embrace occurs under two conditions:
a processor requires one or more resources to perform a
task, and one or more of the required resources is temporarily
owned by another processor, which requires one or more of
the same resources to perform its task.

For example, if processor A owns resource X and processor
B owns resource Y, and both resources are required to ac-
complish the task, a stalemate occurs in which each proces-
sor waits for the other to relinquish the required resource. This
is the simplest example. The concept extends to n processors
and m resources.

The solution to the deadly embrace depends upon whether
the system is autocratic or egalitarian, the tasks’ priorities,
etc., and is beyond the scope of this discussion. In the case
of dual-port RAMs, however, the solution is simple: Do not
cascade two masters in width; use a master and a slave.

Cypress Dual-Port RAM Operation
A simplified block diagram of the Cypress dual-port RAM ap-
pears in Figure 2. The device interface includes three types
of signals: address, data, and control. There are two sets of
these signals: those of the left port and those of the right port.
Each signal has either the subscript L or R to designate left
or right, respectively.

The address pins are designated A0 through A9 (1024 x 8)
and A0 through A10 (2048 x 8), where A0 is the least signifi-
cant bit (LSB) and A9 or A10 is the most significant bit (MSB).
The address pins are unidirectional inputs to the device; their
states specify the memory location to be read from or written
into.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_2

Understanding Asynchronous Dual-Port RAMs

3

The data pins are designated I/O0 through I/O7, where I/O0
is the LSB and I/O7 is the MSB. The data pins are bidirection-
al; their states represent either the data to be written or the
data to be read.

The control pins are chip enable (CE), read/write (R/W), and
output enable (OE). A semaphore enable control pin (SEM)
is included on dual-port RAMs with semaphores. Two flags
are also provided, INT and BUSY; both have open-drain out-
puts and require external pull-up resistors. A LOW on the chip
enable input allows that port to become functional. Data is
either read from the internal dual-port RAM array or written
into it, depending upon the state of the read/write signal; a
LOW initiates a write operation. The three-state data output
drivers are enabled by a LOW output enable.

When one port writes to a pre-determined mailbox, an inter-
rupt to the other port is generated. When the interrupted port
reads that memory location, the interrupt is reset.

When both ports address the same memory location and
both chip enables are active (LOW), contention occurs for that
address. An arbitration is then performed, and ownership of
the memory location is assigned to the winner. An active
(LOW) busy signal notifies the loser of the arbitration.

Dual-Port RAM Functional Description
An important aspect of the Cypress dual-port RAMs is their
interrupt logic. A simplified logic diagram of this logic appears
in Figure 3, with the chip enables deleted. A port’s chip enable
must be asserted for the port to either read from or write to
any location, including the mailboxes. Note that you can use

the mailbox locations as conventional memory by not con-
necting the interrupt line to the appropriate processor.

The upper two memory locations (7FF and 7FE for 2K x 8;
3FF and 3FE for 1K x 8) can be used for message passing.
The highest memory location serves as the mailbox for the
right processor. When the left processor writes to this mail-
box, the interrupt (request) to the right processor, INTR, goes
LOW. When the right processor reads its mailbox, the flip-flop
is reset, and INTR goes HIGH.

The second highest memory location serves as the mailbox
for the left processor. When the right processor writes to this
mailbox, the interrupt (request) to the left processor, INTL,
goes LOW. When the left processor reads its mailbox, the
flip-flop is reset, and INTL goes HIGH.

Note that each port can read the other port’s mailbox without
resetting the associated flip-flop. If your application does not
require message passing, leave the appropriate pin open. Do
not connect a pull-up resistor to the pin, and do not connect
the pin to the processor’s interrupt request pin.

Note that the active state of the busy signal prevents a port
from setting the interrupt to the winning port. Additionally, an
active busy signal to a port prevents that port from reading its
own mailbox and thus resetting the interrupt. These opera-
tions are ramifications of the data-ownership concept.

If both ports address the same memory location at the same
time, the master performs an arbitration, so that one port wins
and the other loses. Because each of the two ports can be in
either the reading or writing state, there are four possible
combinations of ports and states (Table 1).

Figure 2. Dual-Port RAM Block Diagram

DATA
LEFT

DATA I/O

DUAL-PORT

DATA I/O

RIGHT
DATA

RIGHT
ADDRESS

ADDRESS

DECODE

RAM

MEMORY

CELLS

LEFT

ADDRESS

DECODE

ADDRESS

CONTROL

CONTROL AND ADDRESS ARBITRATION LOGIC
CONTROL

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_3

Understanding Asynchronous Dual-Port RAMs

4

Both Ports Reading

If both ports of a dual-port IC read the same location at the
same time, you can assume that both ports read the same
data. When arbitration occurs as a result of contention in a
Cypress dual-port RAM, the port that wins the arbitration gets
temporary ownership of the memory location. The losing port
can read the memory location but the busy signal tells it that
it lost the arbitration.

To guarantee data integrity in a multiprocessor system, it is
standard practice to apply the concept of data ownership.
This ownership can apply to executable code, data, or control
locations in memory. The control locations in memory can be
associated with a resource, such as a printer, tape drive, disk
drive, or communications port.

One Port Reading, the Other Writing

The result of arbitration will allocate priority to either the read-
ing or the writing port. In Cypress dual-port RAMs, if the los-
ing port is attempting to write data, the write is inhibited so
that the data in memory is not corrupted. The BUSY flag to
the losing port signals that the write was not performed.

If the losing port is attempting to read data, it is possible for
the data to be old data, new data, or some random combina-

tion of the two. The BUSY flag to the losing port signals that
the old data is still being read on the losing port’s data lines.
The old data will remain undisturbed for an access time after
either BUSY on the losing port goes HIGH, the losing port’s
address is toggled, CE for the losing port is toggled, or R/W
for the losing port is toggled during a valid read.

If the new data is needed, the BUSY flag can be used to
generate a delay until the new data is present or can signal a
processor to attempt the read again after BUSY is cleared.

Both Ports Writing

The losing port is prevented from writing so that the data can-
not be corrupted. BUSY is asserted to the losing port, indicat-
ing that the write operation was unsuccessful.

Arbitration Logic
Figure 4 shows the arbitration logic used in Cypress dual-port
RAM masters. The arbitration logic has three functions: to
decide which port wins and which loses if the addresses are
equal simultaneously, to prevent the losing port from writing,
and to provide a busy signal to the losing port.

The arbitration logic consists of left and right address equality
comparators with their associated delay buffers; the arbitra-

Figure 3. Interrupt Logic

(OPEN DRAIN)

LEFT SIDE WRITE
INTERRUPT TO RIGHT SIDE

INTR

RIGHT SIDE READ
ADDRESS=3FF

ADDRESS=3FE

LEFT SIDE

ADDRESS

LEFT SIDE READ
ADDRESS=3FF RIGHT SIDE

ADDRESSADDRESS=3FE

INTERRUPT TO LEFT SIDE

INTL (OPEN DRAIN)

RIGHT SIDE WRITE

Table 1. Functional Operation of Dual-Port Masters

Operation Result of Operation after Arbitration

Case Left Port Right Port (Master)

1 Read Read Both ports read.

2 Read Write Loser is prevented from writing. If loser is reading
and ports are asynchronous, data read might not
be valid.3 Write Read

4 Write Write

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_4

Understanding Asynchronous Dual-Port RAMs

5

tion latch formed by the cross-coupled, three-input NAND
gates labeled L and R; and the gates that generate the busy
signals.

Operation With Unequal Addresses

When the addresses of the right and left ports are not equal,
the outputs of the address comparators (nodes A and B) are
both LOW, and the outputs of the gates labeled L and R
(nodes C and D) are both HIGH. This condition forces both
BUSY signals HIGH and both Write Inhibit signals HIGH. The
arbitration latch does not function as a latch.

Left Port Camped on an Address

Next, consider the condition where the left-port address and
chip enable are quiescent, and the right-port address chang-
es to an address equal to that of the left port. Nodes A and B
are initially LOW.

Because the right-port address does not go through the delay
buffer, the output of the right-address comparator (node B)
goes HIGH before node A goes HIGH by a delay interval, d.
The delay must be greater than the delay through the R gate,
so that when node B goes HIGH, node D goes LOW, causing
node C to remain HIGH. CE(R) and CE(L) are both HIGH;
they are the inverse of the chip enable inputs. Node D going
LOW causes the output of the BR gate to go LOW, which tells
the right port that the memory location it just addressed be-
longs to the left port. A write inhibit signal is also generated
that prevents the right port from writing into the addressed
memory location.

In summary, when the right port addresses a memory loca-
tion that is already being addressed by the left port, a delay
occurs that equals the sum of the propagation delays of the
right-address comparator, the R gate, the BR gate, and the
output driver (not shown in the diagram). Then the busy signal
to the right port is asserted. Nodes A, B, and C are now HIGH,
and node D is LOW. BUSY is asserted to the right port.

Due to the symmetry of the arbitration logic, the device oper-
ates the same when either the right or left ports are camped
on an address.

Right and Left Addresses Equal Simultaneously

In the general case, it is possible to have both ports access
the same memory location simultaneously, unless this is
guaranteed not to occur by the design of the system. When
nodes A and B go from LOW to HIGH at exactly the same
instant, the arbitration latch settles into one of two states and
determines which port wins and which port loses. The latch
is designed such that its two outputs are never LOW at the
same time. It also has a very fast switching time.

The dual-port RAM imposes a minimum time difference be-
tween either of two events: the two chip enables going from
inactive to active and the two sets of addresses going from
mismatch to equal. If the events are close together in time,
the probability of each port either winning or losing the arbi-
tration is approximately equal. This parameter is called port
set-up time for priority and is abbreviated as tPS on the
datasheets. The specified value is 5 ns. (Note, though, that
Cypress product engineers have measured tPS at room tem-
perature and nominal VCC (5V) and found a value of approx-
imately 200 ps.) In other words, if one port addresses a mem-
ory location 5 ns before the other port, the first port is
guaranteed to win. If not, the result of the subsequent arbitra-
tion is unpredictable.

Other Key BUSY Parameters
Several other key parameters are specified with respect to the
busy signal. For example, BUSY LOW from address match,
tBLA, is the maximum time it takes busy to go LOW, as mea-
sured from the time the two port addresses are the same. This
is the time from an address match until the losing port is no-
tified that it has lost the arbitration. Obviously, the sooner this
occurs the better. If the value of tBLA is greater than the mem-
ory cycle time, another cycle must be added to detect the
condition, which can severely reduce performance. This time
is less than the minimum cycle time for all speed grades of all
Cypress dual-port RAMs.

Another parameter, BUSY HIGH from address mismatch, tB-
HA, is the maximum time it takes BUSY to go from LOW to
HIGH, as measured from the time the two port addresses do
not match until the BUSY signal goes HIGH. The comments
of the preceding paragraph also apply here.

The next two parameters are similar to the preceding two. The
difference is that the chip enable controls the busy signal. The
parameters are BUSY LOW from CE LOW, tBLC, and BUSY
HIGH from CE HIGH, tBHC. Both of these parameters are less
than the minimum cycle time for all speed grades of all Cy-
press dual-port RAMs.

BUSY HIGH to valid data, tBDD, is the maximum time it takes
the data to become valid to the losing port after BUSY goes
away. This parameter’s value equals the address access time,
tAA, because a read cycle is initiated to the losing port when
its BUSY signal transitions from LOW to HIGH. An action by
either port can cause the busy transition. The winning port
can either change its address or deassert its chip enable.

To illustrate the last two parameters, Figure 5 shows the tim-
ing for the right port performing a write operation and the left
port asynchronously moving to the same address and at-
tempting to perform a read operation. The first parameter of
interest is tDDD, which is the maximum time between the sta-
bilization of the data to be written by the winning port and that
same data becoming valid at the outputs of the port that re-
ceived the BUSY. The second parameter of interest is tWDD,

Figure 4. Arbitration Logic

ADDRESS(L)

CE(L)

BUSY(L)

WRITE INHIBIT(L)

BL

C D

L R

A B

LEFT
ADDRESS

EQUAL
COMPARATOR

RIGHT
ADDRESS

EQUAL
COMPARATOR

=d

DELAY

ADDRESS(R)

CE(R)

BUSY(R)

WRITE INHIBIT(R)

BR

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_5

Understanding Asynchronous Dual-Port RAMs

6

which is the maximum time between the HIGH-to-LOW tran-
sition of the winning port’s write strobe and the data becoming
valid at the outputs of the port that received the BUSY.

It is possible for the losing port to read either the old data, the
new data, or some random combination of the two under
these circumstances: the two ports are operating asynchro-
nously (i.e., with independent clocks), and the conditions il-
lustrated in Figure 5 occur (winning port writing and losing
port reading). If the read occurs early with respect to the write,
old data is read. If the read occurs late with respect to the
write, new data is read. And, if the read occurs at the same
time the data is changing from old to new, the data read is not
predictable. However, all is not lost. There are two general
solutions. Both use the fact that the busy signal is asserted to
the losing port, telling the port in this instance that the data it
is reading might not be valid.

One solution is to use the HIGH-to-LOW transition of the busy
signal to the losing port to generate an interrupt to the proces-
sor (or state machine) so that operation can be repeated. The
drawback of this technique is that a snapshot of the states of
the losing port’s address lines and read/write line must be
taken, so that the processor can tell what load/store operation
caused the interrupt. Taking this snapshot requires latches or
flip-flops for the data and control logic for doing the sampling,
and the technique uses up an interrupt line. The processor
must also be able to read the sampled data later.

A second solution is to use the LOW level of the BUSY signal
to the losing port to prompt one of three types of delays: delay
the reading of data until the data becomes valid, which occurs
an access time after the LOW-to-HIGH transition of BUSY;
insert wait states until BUSY goes HIGH; or stretch the clock
until BUSY goes HIGH. Any of these methods probably re-
quire less hardware and control logic than the preceding ap-
proach. Use of these methods does mean that the BUSY sig-
nal must eventually go from LOW to HIGH. This happens
when the winning port either changes its address or deas-
serts its chip enable. For this reason, as well as for system
noise immunity and power-saving considerations, it is recom-
mended that blocks of addresses be decoded to generate
chip enables for the dual-port RAMs.

Because the losing port has no control over the winning port
in the general case, however, a question arises: What can the
losing port do to successfully read the data just written, as-
suming the winning port does not change its address, write,
or chip enable signals? There are two possible operations:

1. Change an address line to a different address, then
change back to the original address. This toggles the
BUSY signal to the losing port.

2. Change the state of the chip enable. This also toggles the
BUSY signal to the losing port.

Hardware Semaphores
Cypress offers dual-port RAMs with eight on-chip hardware
semaphore latches that are independent from RAM memory
locations. Semaphore signaling is a popular method of allo-
cating mutually exclusive accesses to blocks of memory that
are shared among several processors. Exclusive processor
control guarantees data integrity in sensitive applications
such as shared I/O buffers. Semaphore signaling can also
improve the efficiency of block memory accesses by prevent-
ing delays and processor stalls due to a memory location be-
ing busy from another processor access.

Traditional semaphore signaling has been implemented in
software using dedicated memory locations to hold the sema-
phore signals. A processor could attempt to gain control of a
semaphore by using an indivisible test and set instruction to
test if the semaphore was set by another processor. If the
semaphore is free, the processor sets the semaphore and
gains exclusive control of a block of memory.

Cypress dual-port RAMs have on-chip hardware semaphores
that are independent from RAM memory locations.

Hardware semaphores eliminate the need to use a processor
with an indivisible test and set instruction. Semaphore control
requests are handled using a standard write to the sema-
phore latch followed by a read instruction. There is no require-
ment to lockout other processor accesses to the semaphore
between the write and read.

The hardware semaphores provide flexible software configu-
ration of shared memory. The semaphores operate indepen-
dent of any memory in the RAM allowing software to allocate
block addresses and block sizes.

Cypress hardware semaphores implement a “token passing”
scheme allowing the port in possession of the token to have
exclusive access to a block of shared memory. Possession of
the token can only be relinquished by the port with posses-
sion. A port’s request for possession of the token will be de-
nied if the token is held by the other port.

Possession of a token is indicated by the state of a sema-
phore latch formed from two cross-coupled NOR gates (see
Figure 6). The latch can be set so that only one port controls
the semaphore at a time. Additional input latches on the
semaphore ports are used to hold requests to set or clear the
latch. An output latch on each port is used to prevent the
output from changing during a read from the port.

Figure 5. BUSY Timing

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_6

Understanding Asynchronous Dual-Port RAMs

7

The semaphore latches are accessed through the data and
address ports the same way as a RAM cell access. The
semaphore enable line (SEM = LOW) initiates a semaphore
access cycle. The A0–2 lines select which semaphore latch
is accessed. Only the data on D0 is latched into the sema-
phore during a write. The other data lines are ignored. During
a read, the semaphore drives all the data lines (D0 through
D7, D8) with the semaphore signal.

A processor requests control of a semaphore by writing a 0
to the D0 port of the semaphore addressed by A0–2. The 0
is latched into the port’s input register and held until another
write attempts to set it to 1. If the semaphore is free at the time
of the request, the port will immediately be granted control of
the semaphore. If the semaphore is controlled by the other
port, the request for control will be denied. If control of the
semaphore is relinquished by the other port while the 0 is still
pending, then the requesting port will gain control of the
semaphore. Control of the semaphore can only be relin-
quished by the controlling port by writing a 1 to the sema-
phore.

To see if a request for control of the semaphore was success-
ful, a read of the semaphore is performed. A port controls the
semaphore if 0 is read out on D0. The port does not control
the semaphore if a 1 is read. The semaphore outputs drive all
of the data lines with the state of the semaphore, so D0–7 will
be “00000000" when control is granted and will be
“11111111" when control is denied. The state of the internal
semaphore latches may change during a read, but the output
latch prevents the changes from propagating to the data lines.
A new read cycle must be performed in order to update the
port’s output lines.

If both ports attempt to write a 0 within tSPS of each other
while the semaphore is free, semaphore arbitration logic will
guarantee that only one side gains control of the semaphore.

Address Transition Detection
Why does changing the address or chip enable allow a losing
port to read data successfully? All Cypress dual-port RAMs,
both masters and slaves, use a circuit design technique called
Address Transition Detection (ATD) to improve performance
and reduce power dissipation.

ATD improves performance by equilibrating differential paths,
pre-charging critical nodes, and forcing the outputs to a
high-impedance state. Equilibration and pre-charging will
bias critical nodes to voltage levels approximately in the
mid-point of the small-signal operating range; when the data
is sensed, it takes a shorter amount of time to transition to the
0 or 1 level. Forcing the outputs to their high-impedance
states improves speed slightly, but more importantly, the tech-
nique reduces output switching noise by eliminating crowbar
current and separating the output current into two pulses in-
stead of one.

ATD minimizes power consumption because it turns on pow-
er-hungry circuits only when they are required. Slightly over
50 percent of a RAM’s circuits are linear, and approximately
70 percent of the power is dissipated in the sense amplifiers
during a read operation. When the RAM is operating at its
maximum frequency, the ATD circuits are constantly trig-
gered, so the power savings are minimal. At lower speeds or
smaller duty cycles, however, the power savings are signifi-
cant.

A diagram representing a typical ATD sequence is illustrated
in Figure 7. The event that triggers the ATD sequence for
either port is the transition of any address, chip-enable, or

Figure 6. Semaphore Latch Cell

LE

D Q

LE

DQ

LE

DQ

D Q
LE

WRITEL WRITER

READL READR

D7L

D1L

D0L

D7R

D1R

D0R

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_7

Understanding Asynchronous Dual-Port RAMs

8

read/write signal. Equilibration and pre-charging are per-
formed next, followed by either turning on the sense amplifi-
ers and latching the data (read operation) or pulling the BIT
and BIT lines to the required levels (write operation) at the
addressed location. The master clock pulse lasts from 7 to 11
ns, depending upon temperature, supply voltage, and the dis-
tribution of IC processing parameters. At the end of the pulse,
the data is latched and the appropriate circuits are turned off.

Master Standalone Operation
Figure 8 presents a block diagram of a system using two 8-bit
microprocessors, the Cypress CY7C132 dual-port RAM, stat-
ic RAM, and EPROM. The address lines of each micropro-
cessor are decoded to generate the chip enables to the du-
al-port RAM, the SRAM, and the EPROM. Note that pull-up
resistors are required on the interrupt requests to the micro-
processors and the busy signals, which go to the micropro-
cessors’ wait inputs.

Slave Word-Width Expansion
The block diagram in Figure 9 shows how to interconnect a
CY7C132 (2K x 8) master and a CY7C142 (2K x 8) slave to
form a 16-bit-wide word. The diagram does not show the in-
terfaces to the processors or the connections for the interrupt
signals. As previously explained, the interrupt outputs are not
available at the 2K x 8 level in the 48-pin DIP due to pin limi-
tations. In the LCC and PLCC packages, the interrupt outputs
are available from both the master and the slave devices. You
can use either one. You do not have to tie the corresponding
interrupt pins of the master and the slave together.

Figure 7. Simplified ATD Sequence

IDLE

DETECT EVENT

TURN-ON CIRCUITS

PERFORM OPERATION

TURN-OFF CIRCUITS

Figure 8. Typical 8-Bit Microprocessor

INT (R)

A (R)

D (R)

WE (R)

CE (R)

BUSY (R)

ADDR

DATA

WE

CE

RAM

VCC

INT (L)

ADDR

DATA

WR

INT (L)

A (L)

D (L)

WE (L)

ADDR

DATA

WR

INT (R)

WAIT

MREQ

8-BIT µP

CE (L)

BUSY (L)

DUAL-PORT 2K x 8

WAIT

MREQ

8-BIT µP

VCC

CHIP

ENABLE

DECODE

ADDR

DATA

WE

CE

CHIP

ENABLE

DECODE

ADDR

DATA

CE

ADDR

DATA

CE

EPROMEPROM

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_8

Understanding Asynchronous Dual-Port RAMs

9

Delaying the Write Strobe
In width expansion, the write signals to the slave devices must
be delayed by an interval at least equal to tBLA, which is the
time required for the master to assert the busy signal to the
slave after an address match. The delay prevents the slave
data at the address in contention from being overwritten. Both
the write and read cycle times must be increased by this
amount of time. In equation form:

tWC = tPWE + tBLA Eq. 1

where the delay must be at least equal to tBLA.

Note that if you add more slaves to make a wider word, (e.g.,
24 or 32 bits) the delay elements’ outputs can connect directly
to the write strobe inputs. Additional delay elements are not
required.

Slave Standalone Operation
Some applications might require that you give one port per-
manent and absolute priority over the other. You can easily do
this by implementing the memory using only slave dual-port
RAMs. The BUSY input to the priority port must be tied HIGH
by either connecting it directly to VCC or to VCC through a
10-KΩ pull-up resistor. You can connect the low-priority port’s
BUSY input to the high-priority port’s read/write input.

In this configuration, the busy (read/write) signal to the low-
er-priority port always prevents the port from writing when the
high-priority port is writing to any location. The data of the
lower-priority port is overwritten when the two ports operate
asynchronously, the lower-priority port is writing, and the
higher-priority port simultaneously writes. This is not a very
elegant solution because the BUSY input to the low-priority
port is not qualified by comparing the addresses of the two
ports or their chip enables. However, this approach suggests
how the slave dual-port RAMs can be used with external ar-
bitration logic. The busy inputs can be used by control logic

or under program control to dynamically change the port pri-
orities.

If the lower-priority port is read only, you can tie its BUSY input
HIGH by either connecting it directly to VCC or to VCC through
a pull-up resistor.

Dual-Port Design Example
The following design example illustrates the methodology to
follow when designing with Cypress dual-port RAMs. In this
example, a dual-port memory is used for message passing
and bus snooping for many bus masters on a 32-bit-wide sys-
tem bus. The dual-port RAMs interface to a 32-bit system bus
on the right side and a 16-bit processor on the left side. From
the right port, the memory appears as 8K 32-bit words, and
from the left port the memory appears as 16K 16-bit words.

The memory has the following characteristics:

1. The memory location corresponding to address 0 for both
ports is the same.

2. The data read from and written to the memory from both
ports is in the same order. Thus, D0 of the right port cor-
responds to D0 of the left port. Additionally, D16 of the right
port appears as D0 of the left port in address location 2048.

3. The minimum cycle time is 35 ns.

4. To conserve power, blocks of addresses are decoded to
generate the required chip selects.

5. The CY7C132 and CY7C142 dual-port RAMs are used.
Part of the design task is to specify the number of masters
and slaves required and the way they must be intercon-
nected.

6. The appropriate BUSY signals must be generated to the
correct port when contention occurs.

7. All possible mailbox locations that can be used for mes-
sage passing are used.

Figure 9. Expansion (2K x 16) with Slave

A10 – A0 (L)

D7 – D0 (L)

WE (L)

OE (L)

A (L)

D (L)

WE (L)

DUAL PORT

RAM CHIP

A (R)

D (R)

WE (R)

A10 – A0 (R)

D7 – D0 (R)

WE (R)

OE (R)

CHIP ENABLE (R)

BUSY (R)

OE (R)

CE (R)

BUSY (R)

OE (L)

CE (L)

BUSY (L)

CY7C132

2K x 8

MASTER
BUSY (L)

CHIP ENABLE (L)

DELAY
VCC

DELAY

D15 – D8 (R)
A (R)

D (R)

WE (R)

OE (R)

CE (R)

A (L)

D (L)

WE (L)

OE (L)

CE (L)

DUAL PORT

RAM CHIP

CY7C142

2K x 8

D15 – D8 (L)

BUSY (L) SLAVE BUSY (R)

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_9

Understanding Asynchronous Dual-Port RAMs

10

8. The right port signals are AR0...AR12, DR0...DR31, CER,
and BUSYR. The left port signals are AL0...AL13,
DL0...DL15, CEL, and BUSYL.

A simplified logic diagram of the memory appears in Figure
10. A total of 16 2K x 8 dual-port RAMs are required. The
devices labeled MA (master, bank A) through MD (master,
bank D) are CY7C132 masters. The devices labeled SU
(slave, upper half-word) and SL (slave, lower half-word) are
CY7C142 slaves. The memory consists of four masters and
twelve slaves, along with the required control logic.

From the right port the memory is configured as 8K 32-bit
words, with a master controlling three slaves. The one-of-four
decoder labeled RB (right bank) generates chip enable sig-
nals for each bank of 2K 32-bit words. Data is written (sam-
pled) on the bus side, and the only reads performed are from
the mailbox locations.

A general-purpose, right-port, control-logic block generates
control signals that conform to the timing diagram shown in
Figure 11. The diagram does not show the generation of the
output enable control signals, but they are similar to the RB
decoder signals. If your application does not require message
passing to the right port, you can tie the right-port output en-
able pins of all of the dual-port RAMs directly to VCC.

From the left port, the memory is configured as 16K 16-bit
words. For this organization, you might think that the slave
dual-port RAMs in the second column from the right in Figure
10 should be masters. If this were the case, however, you
would have to defeat the arbitration logic in them when the
right port addressed the same address; this would add logic,
reduce the speed, and complicate the design. Therefore, this
design uses a combination of left-bank decoding (LB, 1-of-4
decoder) and upper-lower 16-bit word decoding (UL, 1-of-8
decoder) to cause the bank master to arbitrate when the right
port is addressing the same bank as the left port (more on this
later).

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_10

Understanding Asynchronous Dual-Port RAMs

11

Figure 10. Logic Diagram for Dual-Port Example

AR(0:10)
AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

DL0 - DL7
VCC

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

B-L

R/W-R
B-R

DL8 - DL15

AL(0:10)

RIGHT CLK

STATUS

CONTROL

CONTROL
LOGIC

LEFT PORT

CONTROL

LOGIC

RIGHT PORT
STATUS

CONTROL

LEFT CLK

RW-R

ENABLE-R
AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

SL SL

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

VCC

SU

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

B-L

R/W-R
B-R

0
1

MA

A
B

AL13
AL12

ENABLE-L

R/W-L

C

EN

AL11

UL

1 OF 8
DECODE

2
3
4
5
6
7

MB SU SLSL
0
1
2

A
B

R
B

AR11
AR12

3 EN

1 OF 4
DECODE

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

VCC

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

B-L

R/W-R
B-R

0
1
2
3

A
B

EN LB

1 OF 4
DECODE

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

B-L

R/W-R
B-R

MC

VCC

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

SU

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

AL(0:10)

CE-L

R/W-L

I/O-L

OE-L

AR(0:10)
I/O-R
CE-R
OE-R

R/W-R
B-R

B-L

SL SL
OE-R

MD

DR24 - DR31

VCC

SU

DR16 - DR23 DR8 - DR15

SLSL

DR0 - DR7

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_11

Understanding Asynchronous Dual-Port RAMs

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Right-Port Operation

For purposes of this discussion, “word” refers to the 32-bit
word at the right-port system-bus interface. At the 16-bit pro-
cessor interface, the 32-bit word is referred to as either the
lower half word (right-port bits 0 through 15) or the upper
half-word (right-port bits 16 through 31).

The bank-selection process employs the chip enables. Spe-
cifically, the 1-of-4 RB decoder decodes the four combina-
tions of the upper two right-port address-bus signals and gen-
erates four active-LOW chip enables to each bank of four
dual-port RAMs. Bank A contains addresses 0 through 2047,
bank B contains addresses 2048 through 4095, bank C con-
tains addresses 4096 through 6143, and bank D contains ad-
dresses 6144 through 8191. In other words, bank A address-
es 0 to 2K, bank B 2K to 4K, bank C 4K to 6K, and bank D 6K
to 8K.

The lower 11 right-port address lines, AR(0:10), are connect-
ed to the A0 through A10 right-port address pins of all the
dual-port RAMs.

Figure 11 does not show the generation of the write strobe,
but does show the signal’s timing. The write enable is applied
directly to all the masters in parallel, then buffered, and then
applied to all the slaves. The minimum propagation delay of
the buffer must be at least as large as tBLA, which is the time
required for the master to assert the busy signal to the slaves
after an address match occurs.

Note that all the right-port output-enable pins are connected
together. These pins should be driven if reading is required;
otherwise connect them to VCC.

The open-drain busy outputs of the right port masters must
be pulled up to VCC using resistors. A value of 330Ω is rec-
ommended. The master busy outputs connect to all the
right-port slave busy inputs for each bank.

For the data bus interface, the I/O pins of each RAM column
connect to their respective I/O pins on each bank. This OR-tie
connection is allowed because the bank-selection chip en-
able causes the output buffers of the unselected banks to go
to the high-impedance state.

Left-Port Operation

The 1-of-4 decoder labeled LB performs bank selection for
the left port. The upper two left-port address lines, AL13 and
AL12, decode bank-select chip enable signals for the four
masters only. Bank A corresponds to addresses 0 through
4095, bank B corresponds to addresses 4095 through 8191,
bank C corresponds to addresses 8192 through 12,287, and
bank D corresponds to addresses 12,288 through 16,383.

To perform upper and lower half-word selection, the 1-of-8
decoder labeled UL decodes the upper three right-port ad-
dress signals. The decoder then generates eight chip enable
signals with a resolution of 2048. The chip enables connect
to the slaves’ chip-enable and output enable pins (2048 res-
olution) and to the masters’ output enable. Because the mas-
ter chip enable resolution is 4096, the master arbitrates for
two blocks of 2048 16-bit half words.

The lower eleven left-port address lines, AL(0:10), connect to
left-port address pins A0 through A10 of all the dual-port
RAMs.

At the 16-bit interface, writing is only required if the left port
wishes to send a message to the right port. Otherwise, you
can connect the left-port write pins of all the dual-port RAMs
to VCC.

To implement the left-port data bus interface, the left port’s
data I/O pins are connected together in the same manner as
those of the right port for all RAMs in the same column. In
addition, to multiplex a 32-bit data word to a 16-bit half word,
the least-significant bytes and the most-significant bytes of
each 2048-word group are connected together. The UL de-
coder that controls the left-port output enable performs the
selection.

If you use the masters’ interrupt pins, pull them up to VCC
through a 330Ω resistor and connect them to the processor
interrupt-request input. You can leave the slaves’ interrupt
pins unconnected.

If the control signal connections from their source to the du-
al-port memory constitute electrically long lines, they might
require proper termination to avoid voltage reflections due to
impedance mismatches. Refer to Cypress’s application note
titled “Systems Design Considerations When Using Cypress
CMOS Circuits.”

References
1. Dijkstra, E.W., “Solution of a Problem in Concurrent Pro-

gramming Control.” CACM, Vol 8, no.9, Sept. 1965, p 569.

2. Dijkstra, E.W., “Co-operating Sequential Processes.” Pro-
gramming Languages, F. Genyus (Ed.) Academic Press,
New York, 1968, pp 43 – 112.

Notes
1. The Interrupt function is not available at the 2K x 8 level in a 48-pin

package.

Figure 11. Timing for Dual-Port Example

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_understanding_asynchronous_dual_port_rams___an1048_12_pdf_p_12

